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Abstract—Reinforcement learning algorithms have attained
noteworthy accomplishments in the field of continuous control.
One of the classic algorithms in continuous control, the DDPG
algorithm, is widely used and has been shown to be suscepti-
ble to overestimation. Following this, the TD3 algorithm was
introduced, which integrated the notion of double DQN. TD3
takes into account the minimum value between a pair of critics
to restrict overestimation. Nevertheless, TD3 may lead to an
underestimation bias. To mitigate the impact of errors, we present
a novel approach by integrating Swap Softmax with TD3, which
can counterbalance the extreme values. We assess the efficacy
of our proposed technique on continuous control tasks that
are simulated by MuJoCo and provided by OpenAI Gym. Our
experimental findings demonstrate a significant enhancement in
the performance and robustness.

Index Terms—reinforcement learning, underestimation, con-
tinuous control, policy gradient, softmax

I. INTRODUCTION

Over the past few years, there have been significant ad-
vancements in several domains through the amalgamation of
deep learning and reinforcement learning methodologies [1]–
[3]. A pivotal breakthrough has been the advent of Deep
Q-learning (DQN), which can attain and even surpass the
proficiency level of human experts in numerous Atari video
games by utilizing raw images as direct inputs [4]. The DQN
algorithm employs a deep neural network to approximate the
action value function [5]. However, it is worth mentioning
that DQN is predominantly utilized for cases where the action
space is low-dimensional and discrete.

Within the realm of continuous control, Deep Deterministic
Policy Gradients (DDPG) is an off-policy and model-free al-
gorithm that relies on deterministic policy gradients for actor-
critic architectures. It utilizes deep neural network approxima-
tions to acquire policies within high-dimensional, continuous
action spaces [6]. The DDPG algorithm is versatile enough to
be employed across a diverse range of tasks, encompassing
pendulum swinging, dexterous maneuvers, leg movements,
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and car driving. Nevertheless, the DDPG algorithm continues
to encounter two major issues:

• The overestimation of the Q value is primarily caused
by the properties of Temporal-Difference (TD) learning
and the inaccurate fitting of the neural network. This
error accumulates over the process of learning, eventually
resulting in either the learning of an inadequate policy or
even the absence of convergence.

• An excessive amount of variance in the estimation pro-
cess may cause amplified perturbation to policy gradi-
ents [7], leading to the unpredictability of an agent’s
behavior and hindering the effectiveness of the training
procedure.

To tackle the challenges stemming from the DDPG algo-
rithm, the Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm was developed and has demonstrated superior
performance on related tasks [8]. It adopts the concept of
double Q-learning from Double DQN and leverages the use of
two separate critic networks [9]. When computing the Q value
estimation, the two networks are asked to predict separately
and then the smaller value is selected. Although the employ-
ment of this update rule may induce an underestimation bias,
it is highly desirable as compared to an overestimation bias,
in which the value of an action would be propagated explicitly
through the policy update. From an intuitive perspective, the
excessively conservative nature of the TD3 algorithm can
facilitate the agent in achieving satisfactory performance and
stable convergence. Nevertheless, it is also likely to constrain
the exploration capabilities thereof.

To obtain more precise target estimations, Softmax Deep
Double Deterministic Policy Gradients (SD3) can be imple-
mented. This algorithm is based on a single-dual estimator
and effectively mitigates the biases of both overestimation and
underestimation [10]. Nevertheless, SD3 is substantially more
intricate and computationally demanding compared to other
algorithms.

This paper draws significant inspiration from both TD3 and
SD3 algorithms, and proposes a novel Swap Softmax operation
to enhance the performance of our proposed algorithm. The
structure of this paper is as follows: Section I illustrates the
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practical applications of reinforcement learning and highlights
the limitations of existing approaches. Section II expounds
on the fundamental framework of reinforcement learning and
conducts a more in-depth analysis of the problem. Section III
outlines our reinforcement learning algorithm for resolving
continuous control problems. Section IV showcases the per-
formance of our algorithm across various MuJoCo simulation
environments [11]. Finally, Section V concludes this paper by
providing a comprehensive summary of its contents.

II. BACKGROUND

Reinforcement Learning (RL) is conventionally conceptual-
ized as a Markov Decision Process (MDP). The fundamental
components of the Reinforcement Learning (RL) framework
comprises a five-tuple (S,A, P,R, γ), wherein S denotes the
set of states, A represents the set of actions, P refers to the
transition probability, R denotes the reward function and γ
represents the discount factor [12], [13].

The MDP framework allows the agent to perceive the exist-
ing state of the environment and take a corresponding action,
which subsequently causes the environment to transition to
the next state. The environment then provides a reward based
on the reward function associated with the transition. The
essence of Reinforcement Learning is to enable the agent
to master a policy π(s;ϕ) where ϕ is a parameter for the
agent to learn what to do in a certain state, which aims to
obtain the maximum expected long-term reward J(π(·;ϕ)) =
E
[∑∞

k=0 γ
kR (sk, ak) | π(·;ϕ)

]
. This paper focuses on deter-

ministic policy.
The Actor-Critic architecture is a significantly influential

RL paradigm that incorporates two core elements: an Actor,
responsible for generating the policy, and a Critic, accountable
for evaluating the policy’s effectiveness. In particular, the
Critic evaluates the quality of the policy by utilizing a value
function Q(s, a; θ) that expresses the expected maximum
reward attainable by the agent in state s upon selecting action
a.

In reinforcement learning algorithms based on the Actor-
Critic architecture, the Actor plays the primary role in de-
termining the action to undertake while the Critic provides
a corresponding score to assess the efficacy of the Actor’s
decision-making ability [12]. By constantly adapting its policy
to the feedback provided by the Critic, the Actor endeavors
to optimize its decision-making ability. It is rational to as-
sume that a superior Critic would enable the identification
of an improved Actor. Therefore, Actor-Critic algorithms are
expected to enhance the performance of both the Actor and
the Critic continuously. As both the Actor and Critic are
typically implemented using neural networks, developing an
appropriate loss function is essential to updating the network
via gradient descent in practical applications. For instance, in
the DDPG algorithm, target networks are utilized to expedite
convergence, and the loss function is mathematically expressed
as:

y = r + γQ′(s′, π′(s′)) (1)

Loss =
∑

(y −Q(, a))2/N (2)

where Q′(s, a|θ′) and π(s|ϕ′) are the corresponding target
networks. Although this algorithm is highly effective, the
presence of overestimated value still causes the performance
of it to deteriorate. To alleviate the problem of overestimation,
the TD3 approach, which draws inspiration from the double
Q-learning technique, adopts a strategy that entails taking
the minimum value of a pair of Critic networks to regulate
overoptimistic estimates. The formula can be expressed as
follows:

y = r + γminj=1,2Q
′
j(s

′, π′(s′)) (3)

Loss =
∑

(y −Q1(s, a))
2/N (4)

The aforementioned update rule exhibits a clear predisposition
towards the occurrence of underestimation bias, which, in
turn, remains a more desirable outcome when compared to
the potential for overestimation bias.

Accurately estimating values is crucial for actor-critic based
algorithms to perform better, thus our aim is to develop an
algorithm that can neutralize the two estimated values based
on TD3.

III. THE PROPOSED APPROACH

In this section, we incorporate an Attention Mechanism
(AM) into the TD3 algorithm to achieve significant perfor-
mance improvement with minimal additional computation.
AM is a critical constituent integrated into deep learning
that enables the autonomous acquisition and measurement of
the input data’s impact on output efficacy [14]. As there are
multiple target values available to choose from for the TD3
algorithm, it is intuitive to consider them together. In this
scenario, the Attention Mechanism is a perfect fit to address
this type of problems.

A. Preliminaries

Some commonly-used methods in the practical application
of Reinforcement Learning are initially presented.

1) Double Network.: DPG algorithm, a derivative of DQN,
is an effective methodology for solving the continuous control
predicament. However, DQN is prone to the overestimation
issue, which is the estimated value function is larger than the
true value function. DQN represents an off-policy method-
ology, which entails the usage of a predicted action with
the highest value to update the target value function rather
than the real action of the subsequent occurrence in every
learning cycle. Unfortunately, this approach tends to produce
overestimations of the Q value.

The function approximation approach expresses the formula
that governs the value function update process as follows:

y = r + γmax
a′

Q (s′, a′; θ)−Q(s, a; θ) (5)

θt+1 = θt + αy∇Q(s, a; θ) (6)

The value function precision is naturally diminished by
this approach due to its underlying reliance on the Bellman
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equation for value estimation, in which the value is iteratively
updated through subsequent states. Consequently, the accuracy
loss issue is further exacerbated. The utilization of an impre-
cise estimate at each update of the policy will give rise to the
buildup of errors. These amounting mistakes can result in an
overestimation of a bad state, which in the end brings about
a policy that cannot be improved to the ideal and hinders the
algorithm from arriving at a convergence.

Double DQN [15] carries out both selection and eval-
uation of actions through the use of distinct value func-
tions. Specifically, the selection of actions is given by a∗ =
argmaxxQ(s′, a; θ). Subsequently, the target is constructed as
t = r + γQ(s′, argmaxaQ(s′, a; θ); θ′).

Double DQN leverages the notion of Double Q-Learning
to mitigate the overestimation issue in Q-Value that its pre-
decessor, DQN, encounters. Specifically, Double DQN cal-
culates the selected action and its estimated value on both
the prediction network and the target network, respectively.
Analogously, DDPG has also been susceptible to this same
problem of overestimation.

The TD3 algorithm is equipped with a pair of networks that
are responsible for calculating distinct Q values. To tackle the
issue of persistent overestimation, TD3 adopts a strategy of
designating the smaller of the two as the target.

Note: Here, we employ two Critic networks, each of which
has a matching target network, thus the TD3 algorithm neces-
sitates a total of six networks.

2) Delayed Policy Updates.: Within the dual network ar-
chitecture, asynchronous updating is adopted for the target
network following the updating of the current network for d
iterations. This can effectively mitigate the accumulation of
errors and subsequent variance [16]. Analogously, delaying
updates to the policy network is also viable given the gradual
parameter updates in actor-critic methods. Such a strategy can
help curtail superfluous updates and accumulated errors over
multiple updates [17]. Furthermore, when reducing update
frequency, it is recommended to employ soft updates as well:

θ′ ← τθ + (1− τ)θ′ (7)

which is also known as momentum update.
3) Target Policy Smoothing Regularization.: To prevent the

occurrence of too many errors, we introduce a delay to the
update process. Furthermore, we consider if there is any way
to decrease the magnitude of errors themselves. In this case,
we first need to identify the origin of the errors [18], [19].

The source of the mistake lies in the bias induced by
the estimation of the value function. A usual method for
eliminating the bias in the estimation in machine learning
is to regularize the parameter updates. Following this line of
thinking, we can apply this approach to reinforcement learning
as well.

A natural concept in reinforcement learning is that similar
actions should possess a comparable value. To ameliorate
errors, one viable approach is to apply value smoothing to
a localized region around the targeted action within the action

space [19]. One plausible strategy entails adding a certain level
of noise to the Q-value of the target action ϵ.

y = r + γQθ′ (s′, πϕ′ (s′) + ϵ) ϵ∼ clip(N(0, σ),−c, c) (8)

where c is the parameter governing the magnitude of error
fluctuations. The noise present here can be perceived as a
form of regularization, which renders the value function update
process more consistent.

B. Swap Softmax

The Softmax function, also referred to as the normalized
exponential function, is a mathematical concept originating
from probability theory and its affiliated domains. It serves
as a generalized version of the logistic function [20]. This
method has the capacity to normalize a given dataset to a set
of decimal numbers ranging from 0 to 1, with a resulting sum
of 1. The formula for this function is usually given by the
following equation:

σ(z)j =
ezj∑

k = 1Kezk
for; j = 1, ·,K; . (9)

Softmax is capable of computing the relative weights of a
sequence of values according to their respective magnitudes, as
demonstrated in Fig. 1. It should be noted that the magnitude
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Fig. 1. A series of values from 0 to 10 and their Softmax mapping.

of the values has an impact on their weight distribution,
meaning that if a set of numbers is multiplied by a certain
factor, the weight of the larger values will also become greater.

The Softmax-based attention mechanism is widely adopted
for various Artificial Intelligence tasks. In particular, for Re-
inforcement Learning, employing Softmax can also be very
beneficial. As introduced in Section III-A, two sets of target
networks are used to calculate the target values, and a conser-
vative approach is taken by choosing the lower of these two
values. However, such an approach would limit the exploration
capability of the agent. Consequently, the Softmax function
is employed to merge two target networks and estimate their
corresponding target values. More specifically, the Softmax
function is utilized to compute the weights of the two Q values,
and subsequently these weights are utilized to calculate the
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weighted sum of the two values as per the ensuing expression,
thereby producing the target Q values:

w =softmax(Q′
1, Q

′
2)

Q′ =w[1]Q′
1 + w[2]Q′

2

(10)

Nevertheless, it is preferable to underestimate than to over-
estimate, so we have added a swap operation to ensure that
smaller values are given more weight:

Q′ = w[2]Q′
1 + w[1]Q′

2 (11)

We refer to this operation as Swap Softmax, and it does not
necessitate additional extensive computational effort.

C. Implementation

The crux of our algorithm is the incorporation of the
attention mechanism, for which we use the Swap Method
outlined above.

Algorithm 1 Swap Softmax TD3
1: for t = 1 to T do
2: Take an action a entails incorporating exploration noise

ϵ ∼ N (0, σ) base on π
3: Obtain a reward r from the environment and undergo a

transition to a new state s′

4: Save transition tuple (s, a, r, s′, d) in B
5: Randomly select a batch of transitions {(s, a, r, s′, d)}

from B
6: Generate a noise ϵ ∼ N (0, σ̄)
7: â′ ← π (s′;ϕ−) + clip(ϵ,−c, c)
8: δ = Swap Softmax[Q′

1(s
′, â′), Q′

2(s
′, â′)]

9: y ← r + δ
10: Update the parameter θi of critic networks by using

Bellman loss:
∑

s(Qi(s, a)− y)2/N
11: if t % d == 0 then
12: ∇ϕJ(ϕ) = N−1

∑
∇aQθ1(s, a)

∣∣
a=πϕ(s)

∇ϕπϕ(s)

13: θ′i ← τθi + (1− τ)θ′i
14: ϕ′ ← τϕ+ (1− τ)ϕ′

15: end if
16: end for

Through numerous experiments, we have observed a com-
mon trend: it is beneficial to reduce the estimate at the initial
stages of training. Therefore, in certain circumstances, we can
incorporate a parameter to reduce the initial estimates and then
gradually restore them to their original values later.

IV. EXPERIMENTS

A. Experimental setup

In this section, our algorithm is employed to tackle one of
the most difficult scenarios in the reinforcement learning con-
tinuous control problem. MuJoCo [11] is an accessible open-
source physics engine intended for the execution of simulation
experiments in control-oriented fields by researchers.

To ensure fairness of the game, every intelligence was
allowed to take 1,000,000 actions and the same update fre-
quency was used. Moreover, the actor and critic networks are

Fig. 2. MuJoCo simulation environments: the top is HalfCheetah with 7-
dimensional action space and 17-dimensional state space and the bottom is
Ant with 8-dimensional action space and 111-dimensional state space

implemented as multilayer perceptrons, which are proficient
in processing multi-dimensional data. The neural network was
uniformly activated with the Relu activation function, which is
widely adopted nowadays. Since the agent was not given any
prior knowledge, it was essentially blind in the early stages
of training, thus learning in this period was not an effective
strategy. To overcome this, random strategies were employed
to explore the environment at the beginning of the training, and
only after the intelligence had acquired some understanding of
the external environment, was it able to learn more effectively
and avoid local optima. Furthermore, a 25,000-step warm-up
process was uniformly applied. The algorithm has a number
of hyperparameters, which are described in detail in Table I.

Reinforcement learning carries a great deal of uncertainty,
so a single experiment hardly provides an accurate indication
of the algorithm’s robustness. As a result, we conduct multiple
experiments and take the average value in each situation.
Furthermore, in order to guarantee the reproducibility of
experimental results, we utilized identical random seeds at all
instances in which random numbers may be introduced.

Different parameters of deep learning can have drastically
distinct performance, thus it is of utmost importance to guar-
antee the conformity of these parameters.

B. Experimental results

We mainly employ the Ant and HalfCheetah of MuJoCo to
assess the proposed algorithm.

The results of our experiments conducted within the Ant
environment can be observed in Fig. 3. Our proposed algo-
rithm demonstrated a significantly faster convergence speed
and higher average reward than TD3. The highest average
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TABLE I
HYPERPARAMETERS OF OUR PROPOSED METHOD

Shared hyperparameter Value

Start Timesteps 25e3
Max Timesteps 1e6
Policy Freq 2
Expl Noise 0.1
Batch Size 256
Discount 0.99
Tau 0.005
Policy Noise 0.2
Noise Clip 0.5

reward of our proposed algorithm was approximately 5315,
while that of TD3 was only around 4372, representing an
improvement of around 21%. This implies that our agent was
able to better perform the target task.

Fig. 3. Average value for Ant during learning process

Furthermore, the proposed algorithm displays substantially
superior robustness performance, as determined by the stan-
dard deviation of the training process, as illustrated in Fig. 4.
The largest standard deviation exhibited by TD3 amounted
to roughly 1418, whereas that of the proposed algorithm
was approximately-only 985. The experimental results demon-
strate that the proposed algorithm consistently exhibited lower
standard deviation values during the entire learning process,
indicating that the agent successfully accomplished the task
with superior efficiency.

The outcomes of our experimental investigations carried out
within the HalfCheetah environment are presented in Fig. 5.
We employed the starting shrinkage method mentioned earlier
in HalfCheetah. This attention mechanism enlarges the value
estimate earlier than TD3, and then gradually reduces it and
returns to the original level, thus enhancing the performance
of the model. The highest average reward of our proposed
algorithm was 10827, significantly outperforming TD3 at
9636, representing a remarkable 1000-point improvement.

We also assess the stability of our approach using the
same methodology. The remarkable advantage of the attention
mechanism is that it can focus on the more critical components

Fig. 4. Standard deviation for Ant during learning process

Fig. 5. Average value for HalfCheetah during learning process

and diminish the effect of irrelevant data, hence reducing the
fluctuation of the data. Hence, it is conceivable to considerably
reduce the instability of the algorithm with respect to the
values, namely by decreasing the standard deviation

V. CONCLUSION

This paper presents an introduction of a Softmax-based
attention mechanism to reinforcement learning algorithms,
which effectively tackles the prevalent problems of over- and
under-estimation in the continuous control field. The pro-
posed algorithm demonstrates notable performance enhance-
ment without necessitating any supplementary computational
resources. Specifically, we use the Swap Softmax method
to combine two target values, thus making the final target
estimation more accurate. To appraise the efficacy of our
proposed algorithm, we conducted experiments within the
prevalent Gym MuJoCo simulation environment. The results
indicate that our proposed algorithm achieved a higher average
value with guaranteed consistent parameters. Furthermore,
the introduced attention mechanism directs focus to salient
data components, thereby mitigating the influence of data
distribution on the model and reinforcing the robustness of the
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Fig. 6. Standard deviation for HalfCheetah during learning process

proposed algorithm’s performance. Additionally, as the robust-
ness of reinforcement learning algorithms has historically been
weak, it is essential to ascertain the stability of the algorithm
while guaranteeing performance improvement.

The attention mechanism facilitates the most efficient uti-
lization of data; however, in this paper, we resort to a dual-
network configuration. If computational consumption is not a
concern, deploying additional networks might produce even
better outcomes. We shall leave this thought for further inves-
tigation.
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